Problem 43

Two points in a plane have polar coordinates $P_{1}(2.500 \mathrm{~m}, \pi / 6)$ and $P_{2}(3.800 \mathrm{~m}, 2 \pi / 3)$. Determine their Cartesian coordinates and the distance between them in the Cartesian coordinate system. Round the distance to a nearest centimeter.

Solution

Find the corresponding Cartesian coordinates to the given polar coordinates.

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}=r_{1} \cos \theta_{1} \\
y_{1}=r_{1} \sin \theta_{1}
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{2}=r_{2} \cos \theta_{2} \\
x_{1}=(2.500 \mathrm{~m}) \cos \frac{\pi}{6} \\
y_{2}=r_{2} \sin \theta_{2}
\end{array}\right. \\
& y_{1}=(2.500 \mathrm{~m}) \sin \frac{\pi}{6}
\end{aligned} \quad\left\{\begin{array} { l }
{ x _ { 2 } = (3 . 8 0 0 \mathrm { m }) \operatorname { c o s } \frac { 2 \pi } { 3 } } \\
{ y _ { 2 } = (3 . 8 0 0 \mathrm { m }) \operatorname { s i n } \frac { 2 \pi } { 3 } }
\end{array} ~ \left(\begin{array}{l}
x_{1} \approx 2.165 \mathrm{~m} \\
y_{1}=1.250 \mathrm{~m}
\end{array} \quad\left\{\begin{array}{l}
x_{2}=-1.900 \mathrm{~m} \\
y_{2} \approx 3.291 \mathrm{~m}
\end{array}\right] .\right.\right.
$$

Use the distance formula to get the distance between the points.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-1.900 \mathrm{~m}-2.165 \mathrm{~m})^{2}+(3.291 \mathrm{~m}-1.250 \mathrm{~m})^{2}} \\
& \approx 4.55 \mathrm{~m}
\end{aligned}
$$

